Sandvik бесшовные нержавеющие трубы

Сталь 316L(3R60)

Sandvik seamless Tubing

Применение

Сталь Сандвик 3R60 широко используется в промышленности в условиях, где стали типа AISI 304 и 304L не обладают достаточной коррозионной стойкостью. Типичные примеры: теплообменники, конденсаторы, трубопроводы, нагревающие и охлаждающие змеевики в химической, нефтехимической, целлюлозно-бумажной и пищевой промышленности.

Общее описание

сплав 3R60 является аустенитной хромо-никелевой сталью с содержанием молибдена не менее 2,5% и низким содержанием углерода. 3R60 также поставляется в модифицированной форме для карбамидного производства 3R60 Urea Grade. См. брошюру S-1843.

Химический состав (номинальный) %

С	Si	Mn	Р	S	Cr	Ni	Мо	
макс.			макс.	макс.				
0.030	0.4	1.7	0.040	0.015	17.5	13	2.6	

Стандарты

Марка Сандвик: 3R60 Urea Grade

ASTM: TP 316L ASTM: S 31603 W Nr.: 1.4435

DIN: X 2 CrNiMo 18 14 3

Карбамидные спецификации

Stamicarbon Snamprogetti Tecnimont Kellogg

Общие стандарты для бесшовных труб:

ASTM A213, A312

DIN 17458

Механические свойства

Для труб с толщиной стенки свыше 10 мм (0.4 дюйма) предел текучести может быть ниже указанных значений на 10 MPa (1.4 ksi).

При 20°С

Metn	ически	na:	Menh
Meib	ически	z pas	меры

Предел	$R_{p1.0}^{a}$	Предел	Удлине	ние	Твердость
текучести	MPa	прочности	A^b	$A_{2"}$	HRB
$R_{p0.2}^{a}$	мин	R_{m}	%	%	
MPa		MPa	мин.	мин.	макс.
мин.					
220	250	515-690	40 ^c	35	90

При 68°F

Дюймовые размеры

—					
Предел	$R_{p1.0}^{a}$	Предел	Удлинени	е	Твердость
текучести	ksi	прочности	A^b	A _{2"}	HRB
$R_{p0.2}^{a}$	мин.	R _m	%	%	
ksi		ksi	мин.	мин.	
мин.					макс.
32	36	75-100	40 ^c	35	90

- $1 \text{ MPa} = 1 \text{ N/mm}^2$
- а) $R_{p0.2}$ и $R_{p1.0}$ соответствуют отклонению 0.2% и 1.0% предела текучести соответственно.
- b) Исходя из $L_0 = 5.65 \ \sqrt{S_0} \ где \ L_0$ начальная длина и S_0 начальная площадь поперечного сечения.
- с) NFA 49-117, 49-217 с мин. 45% может быть выполнен по требованию.

Ударная вязкость (Шарпи V) при -60 °C (-75 °F) равна мин. 150 Дж (110 ft-lb).

При высоких температурах Метрические единицы

Предел текучести R _{p0.2} MPa мин.	R _{p1.0} MPa мин.
200	230
180	215
165	195
150	180
140	170
135	160
130	155
125	150
120	145
120	145
115	140
110	135
	текучести R _{p0.2} MPа мин. 200 180 165 150 140 135 130 125 120 120

Дюймовые размеры

Highing a second and in the se		
Температура, °F	Предел текучести R _{p0.2} ksi мин.	R _{p1.0} ksi мин.
200 400 600 800	26 21 19 18	31 26 23 21
1000	17	20

Предел ползучести на разрыв

продол пол	oy iccini iia p	aspsis			
Температура		Предел		100 000 ч.	
°C	°F	ползучести		MPa	ksi
		на разрыв	ksi	около	около
		10 000 ч.	около		
		MPa			
		около			
550	1020	255	37.0	177	25.7
575	1065	214	31.0	137	19.9
600	1110	172	24.9	108	15.7
625	1155	137	19.9	86	12.5
650	1200	108	15.7	64	9.3
675	1245	83	12.0	46	6.7
700	1290	64	9.3	33	4.8
725	1335	49	7.1	25	3.6
750	1380	37	5.4	18	2.6

Физические свойства

Плотность......8.0 r/cм³, 0.29 lb/in³

Удельная теплопроводность

- H			
Температура, °С	Вт/м °С	Температура	Btu/ft h°F
20	14	68	8
100	15	200	8.5
200	17	400	10
300	18	600	10.5
400	20	800	11.5
500	21	1000	12.5
600	23	1100	13

Удельная теплоемкость

Температура, °С	Дж/кг °С	Температура °F	Btu/lb °F
20	485	68	0.11
100	500	200	0.12
200	515	400	0.12
300	525	600	0.13
400	540	800	0.13
500	555	1000	0.13
600	575	1100	0.14

Коэффициент теплового расширения, средние значения в диапазоне температур $(x10^{-6})$

Температура	°C Ha °C	Температура	°F Ha °F	
30-100	16.5	86-200	9.5	
30-200	17	86-400	9.5	
30-300	17.5	86-600	10	
30-400	18	86-800	10	
30-500	18	86-1000	10	
30-600	18.5	86-1200	10.5	
30-700	18.5	86-1400	10.5	

Модуль упругости, $(x10^3)$

	, (,		
Температу °С	pa, MPa	Температура, °F	ksi	
20	200	68	29.0	
100	194	200	28.2	
200	186	400	26.9	
300	179	600	25.8	
400	172	800	24.7	
500	165	1000	23.5	

Коррозионная стойкость

Сандвик 3R60 имеет хорошую стойкость в:

- органических кислотах при высоких концентрациях и средних температурах
- неорганических кислотах, т.е. в фосфорной и серной кислоте при средних концентрациях и температурах. Сталь также может использоваться в серной кислоте с концентрацией свыше 90% при низких температурах.
- солевых растворах т.е. в сульфитах, сульфидах и сульфитах
- щелочных средах

Коррозионное растрескивание под напряжением

Аустенитные стали чувствительны к коррозионному растрескиванию под напряжением. Это может произойти при температурах выше 60°С (140°F), если материал подвержен действию нагрузок и в то же время контактирует с определенными растворами, особенно содержащими хлориды. Таких уловий эксплуатации следует избегать. Также должны быть приняты во внимание условия, когда заводы закрыты и могут

образовываться конденсаты и соответственно увеличится содержание хлоридов, что может привести как к коррозионному растрескиванию под напряжением, так и к питтингу.

В условиях, где требуется высокая стойкость к коррозионному растрескиванию под напряжением, мы рекомендуем аустенитно-ферритные стали, такие как Сандвик SAF 2304 или SAF 2205.

Межкристаллитная коррозия

Сталь Сандвик 3R60 имеет низкое содержание углерода и за счет этого - лучшую стойкость к межкристаллитной коррозии, чем стали типа AISI 316. Диаграмма, Рис.1, показывает результаты теста на МКК в течение 24 часов в кипящем растворе (12% серной кислоты, 6% сульфата меди)-Страусс тест. Стойкость к воздействию на границы зерен выше у стали AISI 316L чем у AISI 316. Это является преимуществом при проведении сложных сварочных операций.

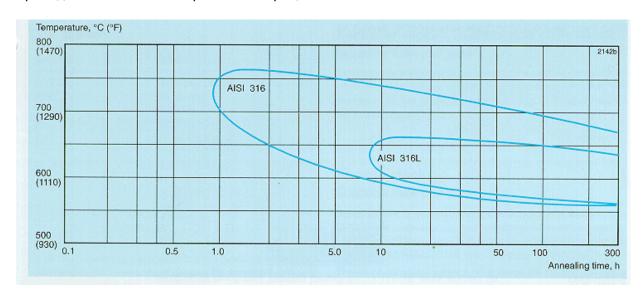


Рис.2. Диаграмма "Время-температура-чувствительность" для стали 3R60 (AISI 316L) и AISI 316.

Питтинговая и щелевая коррозия

Стойкость к этим типам коррозии повышается при увеличении содержания молибдена. Сталь Сандвик 3R60, содержащая 2.6% Мо, имеет более высокую стойкость, чем стали типа AISI 304 и стандартная сталь AISI 316/316L, содержащая 2.1% Мо.

Газовая коррозия

Сталь 3R60 может применяться:

- на воздухе до 850°С (1560°F)
- в паре до 750°C (1380°F)

Следует также учитывать ползучесть при использовании стали в области ползучести.

В дымовых газах, содержащих серу, коррозионная стойкость снижается. В таких средах сталь может использоваться до температур 600-750 °C (1100-1380 °F) в зависимости от условий эксплуатации. Факторы, которые следует принять во внимание, является атмосфера окислительная или восстановительная (т.е. содержание кислорода) и присутствуют ли такие включения, как натрий и ванадий.

Термообработка

Трубы обычно поставляются в термообработанном состоянии. Если необходима дополнительная термообработка после передела, рекомендуется следующее:

Снятие напряжений

850-950°C (1560-1740°F), охлаждение на воздухе

Снятие напряжений

1000-1100°C (1830-2010°F), быстрое охлаждение на воздухе или в воде.

Сварка

Сандвик 3R60 обладает хорошей свариваемостью. Подходящими методами сварки являются ручная дуговая сварка покрытыми электродами и дуговая сварка в среде защитного газа плавящимся и неплавящимся электродом. Не требуется предварительный нагрев и послесварочная термообработка.

• Поскольку данный материал обладает низкой удельной теплопроводностью и высоким коэффициентом теплового расширения, сварка должна проводиться с низкой интенсивностью подачи тепла и согласно тщательно продуманного плана сварочных работ с тем, чтобы обеспечить возможность контроля деформаций сварного соединения. Если, вопреки этим предостережением, очевидно, что остаточные напряжения могут ухудшить фукции сварного шва, мы рекомендуем, чтобы все изделие было подвергнуто термообработке для снятия напряжений. Сварной шов не будет содержать феррита, что важно для высокой коррозионной стойкости в растворах карбамида. Для достижения максимальной коррозионной стойкости оксиды и шлаковые включения должны быть удалены с поверхности шва.

Рекомендуемые присадочные металлы

Для дуговой сварки в защитном газе: проволока Сандвик 25.22.2.LMn. Для ручной дуговой сварки: покрытые электроды Сандвик 25.22.2.LMnВ.

Гибка

После гибки в холодном состоянии необходимость в отжиге обычно отсутствует, но определяющими факторами являются степень гибки и условия эксплуатации. В случае необходимости применяется термообработка для снятия напряжений или отжиг на твердый раствор.

Горячая гибка проводится при 1100-850°C (2010-1560°F) и за ней должен следовать отжиг на твердый раствор.